Effects of multiple chondroitinase ABC applications on tissue engineered articular cartilage.

نویسندگان

  • Roman M Natoli
  • Donald J Responte
  • Benjamin Y Lu
  • Kyriacos A Athanasiou
چکیده

Increasing tensile properties and collagen content is a recognized need in articular cartilage tissue engineering. This study tested the hypothesis that multiple applications of chondroitinase ABC (C-ABC), a glycosaminoglycan (GAG) degrading enzyme, could increase construct tensile properties in a scaffold-less approach for articular cartilage tissue engineering. Developing constructs were treated with C-ABC at 2 weeks, 4 weeks, or both 2 and 4 weeks. At 4 and 6 weeks, construct sulfated GAG composition, collagen composition, and compressive and tensile biomechanical properties were assessed, along with immunohistochemistry (IHC) for collagens type I, II, and VI, and the proteoglycan decorin. At 6 weeks, the tensile modulus and ultimate tensile strength of the group treated at both 2 and 4 weeks were significantly increased over controls by 78% and 64%, reaching values of 3.4 and 1.4 MPa, respectively. Collagen concentration also increased 43%. Further, groups treated at either 2 weeks or 4 weeks alone also had increased tensile stiffness compared to controls. Surprisingly, though GAG was depleted in the treated groups, by 6 weeks there were no significant differences in compressive stiffness. IHC showed abundant collagen type II and VI in all groups, with no collagen type I. Further, decorin staining was reduced following C-ABC treatment, but returned during subsequent culture. The results support the use of C-ABC in cartilage tissue engineering for increasing tensile properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage.

Collagen content and tensile properties of engineered articular cartilage have remained inferior to glycosaminoglycan (GAG) content and compressive properties. Based on a cartilage explant study showing greater tensile properties after chondroitinase ABC (C-ABC) treatment, C-ABC as a strategy for cartilage tissue engineering was investigated. A scaffold-less approach was employed, wherein chond...

متن کامل

Nondestructive evaluation of tissue engineered articular cartilage using time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy.

The goal of this study is to evaluate the ability of a bimodal technique integrating time-resolved fluorescence spectroscopy (TRFS) and ultrasound backscatter microscopy (UBM) for nondestructive detection of changes in the biochemical, structural, and mechanical properties of self-assembled engineered articular cartilage constructs. The cartilage constructs were treated with three chemical agen...

متن کامل

Time and dose-dependent effects of chondroitinase ABC on growth of engineered cartilage.

Tissue engineering techniques have been effective in developing cartilage-like tissues in vitro. However, many scaffold-based approaches to cultivating engineered cartilage have been limited by low collagen production, an impediment for attaining native functional load-bearing tensile mechanical properties. Enzymatic digestion of glycosaminoglycans (GAG) with chondroitinase ABC (chABC) temporar...

متن کامل

Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage

Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive f...

متن کامل

Mechanisms underlying the synergistic enhancement of self-assembled neocartilage treated with chondroitinase-ABC and TGF-β1.

Developing a platform for in vitro cartilage formation would enhance the study of cartilage development, pathogenesis, and regeneration. To improve neocartilage formation, our group developed a novel self-assembly process for articular chondrocytes, which has been improved in this study using a novel combination of catabolic and anabolic agents. TGF-β1 was applied in conjunction with the enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2009